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Two hypotheses concerning the turbulent flow over an infinitesimal-amplitude 
travelling wave are investigated. One hypothesis, originally made by Miles, is 
that the wave does not affect the turbulence and therefore the turbulent Rey- 
nolds stresses are dependent only on height above the mean wave surface. 
Alternatively, the proposal that turbulent stresses are primarily dependent on 
height above the instantaneous wave surface is examined. Numerical solutions 
of the appropriate equations are compared with Stewart’s recent experimental 
results and with the approximate solutions employed by Miles and others. No 
definite conclusion can be reached from comparison with experimental results 
since the predicted flows are quite sensitive to details of the mean velocity profile 
near the wave surface where no data was taken. It is found that the asymptotic 
results do not apply for the conditions investigated. 

1. Introduction 
Much of the impetus for the recent interest in the mechanism of wind genera- 

tion of waves came from the pioneering work of Miles (1957). This paper and a 
subsequent contribution by Benjamin (1959) contained the formulation of the 
linearized analysis which has served as the basis of most recent investigations of 
shearing flow over a wavy boundary. Despite a decade of theoretical and experi- 
mental investigations, in 1967 Miles found that agreement between theory and 
experiment had not been achieved. Miles suggested that this was due primarily to 
the fact that the interaction of the wave and the turbulence was not adequately 
understood, but, after discussing various ad hoc models of the turbulence, he 
concluded that the experimental data then available did not warrant a detailed 
investigation of such hypotheses. 

Until the dynamics of turbulence is better understood models of flow over 
waves will, of necessity, be highly speculative. The Miles theory is based on the 
assumption that the turbulence is not influenced by the wave and consequently 
the turbulent Reynolds stresses are dependent only on the height above the mean 
wave surface. This assumption leads t o  a ‘ quasi-laminar ’ wave generation 
mechanism which is essentially viscous (for a discussion of the limit of zero 
viscosity see Davis 1969). If, on the other hand, the turbulent Reynolds stresses 
are influenced by the wave, these stresses may result in a significant change in the 
flow and a different mechanism for wave generation. 
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It is not now possible to predict the wave-induced perturbations of the 
turbulent Reynolds stresses, but one can make plausible assumptions concerning 
their form, solve the relevant equations of motion and compare the results with 
experimental data. While such a programme could not be expected to lead to an 
adequate model of flow over a wave, it would at  least determine to what extent 
the wave-induced velocity field depends on the turbulence and might hopefully 
allow one to determine which assumed Reynolds stress distribution is most nearly 
correct. Until recently most experimental work has been concerned with wave 
growth rates or the pressure distribution on the wave surface. Because there are 
any number of different flows associated with the same surface pressure or wave 
growth rate, measurements of these quantities cannot adequately distinguish 
between different theoretical models. In his recent laboratory study of the flow 
over surface waves, Stewart (1969) has measured the mean and wave-induced 
velocity fields over water waves in a wind tunnel. These data provide an appro- 
priate experimental standard with which predicted wave-induced velocity fields 
can be tested. 

In this paper two hypotheses about the wave-induced perturbations of the 
turbulent Reynolds stresses are examined. Neither hypothesis has any dynamical 
basis and therefore one must consider them completely unsatisfactory as models 
of the turbulence. But intercomposition of the predictions based on the two 
hypotheses does give a measure of the importance of turbulence and comparison 
with Stewart’s data gives some indication of the amount the hypotheses are in 
error. The first turbulence hypothesis is the ‘ quasi-laminar ’ assumption origi- 
nally introduced by Miles. The second hypothesis is based on Benjamin’s (1959) 
suggestion that, to a first approximation, the properties of the flow are dependent 
on an appropriate measure of the height above the instantaneous wave surface. 
While Benjamin did not consider turbulence (as noted in 8 2, this leads to some 
confusion when dealing with turbulent mean velocity profiles) his suggestion may 
be quite plausibly extended to include turbulent quantities. 

In  order to properly test the two models using experimental data, it is first 
necessary to solve the appropriate equations without introducing any additional 
uncertainties arising from mathematical approximations. It is the purpose of 
this note to present the results of numerical solution of the equations relevant to 
the two models; these results are compared with Stewart’s data and with the 
approximate solution developed by Miles for the ‘ quasi-laminar ’ model. 

2. Theoretical models 
The essential elements of the Miles-Benjamin model of shearing flow over a 

wavy boundary are well known (the nomenclature used here is similar to that of 
Phillips 1966 and Miles 1967) and for our purposes a brief summary will suffice. 

All variables are non-dimensionalized using u* = (TIP)& and I* = v/u* where 
7 is the average viscous tangential stress on the boundary, p is the fluid density, 
and v the kinematic viscosity. Adopting a frame of reference moving in the 
x direction with speed c the wavy boundary is taken as z = a cos kx. In order to 
treat the turbulent flow, the span average () is defined to be the mean value 
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obtained by averaging over y and/or t while holding z and x constant. The 
velocity field is decomposed (see Miles 1967) into an overall mean component 
{U(z)+c,  0, 0},  a-wave induced perturbation {a@, 0, aW} and a turbulent 
component u' where ( u ' )  = 0. Similarly, the pressure is written as the sum 
P + a 9  +PO'. 

If terms of O(a2) are neglected, the equations of motion are 

where ra8 = { - uLu i )  is the turbulent Reynolds stress tensor. Expanding about 
z = 0 the linearized boundary conditions are found to be 

W = ikU'(O)eikx at x = 0, ( 2 4  

@+eikx = Qs at z = 0,  ( 2 b )  
where the real part of complex quantities is implied and in equation ( 2 b )  it has 
been noted that V ( 0 )  = 1. The quantity U(0)  +aQs is the horizontal velocity 
of the wave surface; in the absence of any surface drift U ( 0 )  = -c and if the 
water motion corresponds to a free wave %8 = ckeikx. As z+co both Q and W 
must vanish. 

Taking account of the fact that @ and W must satisfy the continuity equation 
they may be expressed as 

Q = F'(z) eikz, W = - ikF(z) eikx. 

Equations ( 1 )  can then be combined to 

ik{ U(F" - k2F) - UffF> - FiV+ 2k2F" - k4F = R(z), (3) 

where 

For this analysis to apply, the total shear stress must be approximately inde- 
pendent of z ,  that is a(U'+r,)/~z = O(a). 

The ' quasi-laminar ' model of flow over a wave results from the assumption 
that the turbulent Reynolds stresses are functions of z, the height above the mean 
position of the wave. In  this case the inhomogeneous terms X, Z and R are zero, 
and mathematically the problem takes a form identical to the problem of a 
laminar flow over a wavy boundary. 

An equally plausible hypothesis is that the Reynolds stresses are, to  a first 
approximation, dependent on an appropriate measure of the distance above the 
instantaneous water surface rather than on the height above the mean surface 
z = 0. Consequently, we shall investigate the proposition that the Reynolds 
stresses are constant along lines of constant 7 = z - ae-kzfikx. The overall mean 
stress is independent of x so that - rxz+ U f  = ro, 

where Fxz is the overall average of rxz and 70 is a constant. From the hypothesis 
that yXz = rJ7)  it follows that 

- 7 - uf + U"ae-kz+ikx. 
rxz - 0 
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The normal stresses rzz and rxx are not easily determined, but experimental 
evidence (for example, see Hinze 1959, ch. 7) suggests that FX, = Tzz = 2.4Fxz is a 
reasonable approximation. From the hypothesis that the Reynolds stresses are 
functions of 9 it  follows that r,, = rzz = 2.4rxz. While there is considerable 
uncertainty about the assumed form of fx, and Fa, the influence of the normal 
Reynolds stresses on the final result is unimportant. 

The above expressions for the turbulent Reynolds stresses may now be used to 
determine the inhomogeneous terms in equations ( 1 )  and ( 3 ) ;  

x = a{U"'+ (2&- l)kU")e-kZ+ikX, 

R = (U'V - 2 k p  + 2k2T-l") e-kz ,  

f4a.l 

(4b) 

(4c)  

= a{2.4U"'+ (i - 2.4)kui")e-kz+ikx, 

It is coincidental that the terms X ,  Z and R are similar to the inhomogeneous 
term appearing in equation (3 .1)  of Benjamin's (1959) formulation of the 
' quasi-laminar ' model. Why these inhomogeneous terms arise in Benjamin's 
formulation and not in Miles's is a point deserving some clarification. 

Suppose that the turbulent quantities are completely neglected in equations 
( 1 )  and no account is taken of the fact that, in the absence of turbulent stresses, 
only a linear mean profile can be truly parallel. If these equations are transformed 
to the curvilinear co-ordinates 

and terms of O(1) are neglected, the resulting inhomogeneous equations are 
those given by Benjamin. If the x, z co-ordinate system is retained and terms of 
O( 1 )  are neglected, the equations are homogeneous. The velocity fields derived 
from these seemingly identical analyses are not identical. 

The origin of this inconsistency is, as Benjamin pointed out, the fact that the 
mean flow is not a solution of the equations of motion. The inhomogeneous 
term which appears in one derivation and does not appear in the other is simply 
the algebraic difference between the O( 1 )  quantities which are neglected in the 
two developments. In deriving the vorticity equation in Cartesian co-ordinates 
the term d3U/dx3 is neglected but if this quantity is expressed as a function off and 
9 it  is seen that it differs by O(a) from the quantity which is neglected in Ben- 
jamin's derivation. If those terms which are formally O( 1) are sufficiently small to 
be neglected then the inhomogeneous term in the perturbation equation must also 
be neglected. On the other hand, if these terms are large (as is the case for turbu- 
lent velocity profiles) then the analysis cannot be rationally carried to O(a) 
without including the additional quantities which balance the profile curvature. 
If, for example, the Reynolds stresses are retained then the results obtained 
using either Cartesian or curvilinear co-ordinates are identical; the range of 
validity of the linearization is, however, greater for the formulation employing 
curvilinear co-ordinates. 
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3. Numerical technique 
The perturbation velocities @ and W are determined by F(z) ,  the solution to 

equation (3)) and the appropriate boundary conditions at  z = 0 and z + co. 
As discussed earlier it was deemed essential to obtain accurate numerical 

solutions of these equations in order to avoid the uncertainties introduced by the 
simplifications used in obtaining approximate analytic solutions. It was initially 
felt that accurate solutions could be obtained by approximating the two-point 
boundary-value problem by a single system of algebraic equations. Unfor- 
tunately, the memory size of the available computer (a Control Data Corporation 
3600) was too small to allow the use of a finite-difference interval small enough to 
demonstrate convergence. 

Recourse was then made to a modification of the integration scheme developed 
by Kaplan (1964). This technique attempts to find linearly independent solutions 
of equation (3) by integrating out from the end-points using different starting 
conditions. While this technique has modest storage requirements, it is subject to 
a difficulty associated with the fact that the two ‘viscous’ solutions have much 
larger growth rates than the relatively well-behaved ‘inviscid’ solutions. If the 
integration is begun with starting conditions corresponding to  a linear com- 
bination of a rapidly growing solution FR and a slowly growing function F, then, 
before the integration has proceeded far, FR will dominate and F, will be lost 
because of round-off errors. Because the appropriate starting condition for F, 
cannot be determined a priori, it  is necessary to remove FR as the integration 
progresses. 

Only those solutions which vanish as z-fco are required. The ‘viscous ’ solution, 
FR, is found by integrating in from z = 1500 using a fourth-order Runge-Kutta 
algorithm and starting conditions derived from the solution of (3) for U = con- 
stant. A second solution is started at  z = 1500 using initial conditions derived 
from the inviscid form of (3). This solution is extended using the following 
scheme: (a) integrate a short distance to find F, = Fs + A FR where A is, of course, 
unknown; ( b )  obtain an estimate, A,, of the unknown A and define the new 
solution F!,, = F,- AnFR; (c)  extend F,+, as in step (a)  and repeat the filtering 
of step (b )  until z = 0 is reached. It was found that choosing A, such that 
F;+, - k2F,+, = 0 was satisfactory to guarantee that the second solution was 
linearly independent from FR. 

The simultaneous equation method could be used to construct convergent 
solutions to this problem if the outer boundary conditions were placed at  z = 200. 
These solutions were used to test the filtering scheme. In addition, it was verified 
that altering the step size and filtering interval by a factor of three produced a 
variation in the solution, F ,  which was everywhere less than 0.1 per cent of F or 
10-6, whichever was greater. In addition, a mean velocity profile similar to that 
employed by Reynolds (private communication), who calculated solutions of the 
‘ quasi-laminar ’ model, was used and the result agreed within a few per cent; the 
discrepancy was ascribed to the difference between the profiles. 
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4. Results 
The numerical technique described above was used to investigate two basic 

questions: (a )  Can Stewart’s data be used to indicate which of the turbulence 
hypotheses discussed in $ 2  is most appropriate? (b )  How do the flows pre- 
dicted by the two different forms of equation (3) compare with each other and 
with the asymptotic solutions employed by Miles (1957, 1959) and Benjamin 
(1959) ? 

In  order to properly test the two turbulence hypotheses using Stewart’s data, 
it  was first necessary to determine how much the theoretical predictions were 
affected by factors which were not measured or which were subject to some ex- 
perimental error. Thus for each of the experimental conditions, equation (3) was 
integrated numerically using various different mean profiles which were consistent 
with the measured profile but which differed from each other near the wave surface 
where no measurements were made. Similarly, the influence of a small change 
in the friction velocity, u*, was investigated. Further the effects of a small surface 
drift velocity (U(0 )  = 0 . 5 - c )  and an oscillating tangential surface velocity 
(@s = ck exp ( ikz))  were determined to be negligible. 

In  his paper Stewart ( 1969) has presented several typical theoretical wave- 
induced velocity fields along with his experimental data. In that paper 
the hypothesis that the turbulent Reynolds stresses are functions of z is 
referred to as model A and the hypothesis that the stresses are functions of 
7 = z - a exp( - kz + i k z )  is referred to as model B. 

From the results presented in Stewart’s paper, certain qualitative features are 
evident. The small changes in mean profile produced changes in the predicted 
wave-induced velocities as large as the differences between the two different 
turbulent Reynolds stress distributions; the ‘ quasi-laminar ’ model is more 
sensitive to the mean profile than is the ‘turbulent ’ model. At high wind speeds 
(low c) the predicted magnitudes of 9l and W are generally larger than the 
measured values whereas at  low wind speeds the converse is often the case; 
the ‘ quasi-laminar ’ model generally yields larger velocity fluctuations than 
does the hypothesis r = ~ ( 7 ) .  Neither hypothetical Reynolds stress compares 
very well with the data although the assumption that the Reynolds stress 
tensor is a function of 7 appears to be more satisfactory for the higher wind 
speeds. 

It is interesting to compare the numerical results with the approximate 
analytic solutions employed by Miles (1957) and Benjamin (1959) in their 
investigations of the ‘ quasi-laminar ’ model. According to these solutions, 
which are formally valid in the limit of infinite Reynolds number, viscous effects 
are confined to thin layers near the wave surface and near the critical height, 
zc, where U = 0. Asymptotic solutions may be obtained either when these two 
layers are well separated or when both are contained within a region over which 
the mean profile may be approximated by a linear relation. None of the cases 
investigated numerically fall into this latter category. 

As Lin (1955) has shown, where viscous effects are negligible the wave induced 
Reynolds stress c = - @W is constant. Above the critical layer cr = 0 and if the 

~ 
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two viscous layers do not overlap u = - n-k-lw; U:l UA in the region between the 
critical and boundary layers. 

The only numerical results which showed a region of constant wave-induced 
Reynolds stress below the critical height were those corresponding to the lowest 
wind speed (largest G) for which there was a critical layer. Figure 1 is a plot of u 
for one such case; for this integration c = 16.4, k = 0-005 and z, = 155. For 
70 < x < 150, u is approximately equal to the value predicted by the asymptotic 
theory but since u varies significantly over the range 0 < z < 70 it is clear that 
the viscous wall layer is much thicker than might be expected from the asymp- 
totic 

z 
- 

FIGURE 1. The Reynolds stress u = -a?"" ws. z for the 'quasi-laminar' model with 
c = 16.4 and k = 0.005. The dashed line represents u < 0 and the horizontal line the 
value of CT predicted by the asymptotic solution employed by Miles. 

An examination of the inviscid form of equation (3) demonstrates that in 
regions where viscous stresses are negligible P will vary approximately as U 
itself. The function F may be expressed as the sum of FI, the solution of the 
inviscid equation, and a viscous correction Fv, which for a semi-logarithmic U 
is O(F,k-lz-2). Thus, if x2k 9 1 then P will be well approximated by F'; this, 
however, does not mean that the wave-induced Reynolds stress, u, will be 
constant. From the definition of (T it follows that 

2ulk = Im {F'F") z Im {&F$ -I- F;Fs + FbF;}, (5) 

where * denotes the complex conjugate. The first term on the right-hand side of 
(5) represents the Reynolds stress carried by the solution to  the inviscid equation; 
it is necessarily constant and from the asymptotic solution is expected to be of 
O( I q 1 2 x ; 1 ) .  The remaining terms are viscous corrections which are not constant 
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and are of O( I F I k - l ~ - ~ ) .  Consequently a constant wave-induced Reynolds stress 

kz3 1qp y r - - $ l .  
zc PI2 

is to be expecte.d only if 

From the numerical results leading to the plot of g given in figure 1, it was 
found that y = 1 at  z = 45 and y = 13 at z = 70, the point where cr ceased to 
vary rapidly. This tends to confirm the criteria that y must be large if the wave- 
induced Reynolds stress is to be constant. 

One of the energy inputs for wave generation is the component of pressure 
which is in phase with the surface slope. Adopting the Miles (1 957,1959) notation, 
we take the pressure at  the wave surface to be 

P, - Po = p ( 2 . 5 ~ * ) ~  ak Re (a: + ip) eikz. 

The quantity p is of primary interest so far as wave generation is concerned. 

C 1.2 
k 0.0022 

PI 3.9 
P a  2.4 

PI 8.6 
Pa -23.2 

10.1 12.5 14.5 15.2 16.4 24.9 
0.0031 0.0039 0.0045 0.0047 0.0051 0.0077 

6 = 7  

2.2 1.0 0.6 0.6 0.3 0 
-6.5 -1.6 0.5 0.7 0.6 0.7 

6 = 10 

2.3 1.3 0.6 0.4 0.2 0 
- 13.7 1.8 1.0 0.3 0.6 0.6 

6 =  15 

2.9 1.7 0.7 0.4 0.3 0 
- 12.7 6.2 0.8 0.4 0.6 0.7 

TABLE 1. Tho pressure parameter p. Subscript 1 denotes the ‘turbulent’ model while 
2 denotes the ‘quasi-laminar’ model. The parameter S refers to the mean velocity profiles 
shown in figure 4 of Stewart’s (1969) paper 

Values of /3 have been computed for both turbulence hypotheses through 
integration of equation ( l b ) .  Table 1 contains the value of found for both 
turbulence models using each of the three mean velocity profiles shown in 
figure 4 of Stewart’s (1969) paper. The fact that the ‘quasi-laminar’ model 
yields large negative values of/? for the largest wind speed is surprising. It should 
be emphasized, however, that contrary to intuition viscosity becomes more 
important as the wind speed increases; the cases which result in negative values of 
p do not correspond to the large Reynolds number conditions investigated in the 
asymptotic theories. For the lower wind speeds both models yield values of p 
which are of the same magnitude as those given by Miles (1959). 

It is a basic tenet of the Miles wave-generation mechanism that the momentum 
transferred to the wave is extracted from the mean flow in the critical layer and 
carried downwards by the Reynolds stress (T = - @W. The numerical results for 
G = 16.4 appear to be consistent with this mechanism in that there is a significant 
range below the critical level over which viscous stresses are negligible and G is 

_ _  
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approximately constant (see figure 1). However, for the three mean velocity 
profiles considered, the wave-induced Reynolds stress accounted for only about 
half of the momentum carried to the wave surface by the pressure in phase with 
the wave slope. It is apparent, therefore, that for this particular choice of c and k, 
viscous effects near the wave surface are more important than envisioned in the 
Miles theory. 

In addition to the work done by pressure, tangential stresses in phase with the 
tangential surface velocity a t  the wave surface can lead to wave growth (cf. 
Longuet-Higgins 1969). So far as growth of a nearly irrotational wave is con- 
cerned, a fluctuating tangential stress r exp (ikz) results in the same wave growth 
as the normal stress ir exp (ikz). Thus a tangential stress in phase with wave eleva- 
tion is dynamically equivalent to a normal stress in phase with the wave slope. 

C 

k 

$1 

$2 

91 
9 2  

$1 

$2 

7.2 
0.0022 

1.0 
2.2 

0.1 
1.8 

0.2 
1.3 

10.1 
0.0031 

0.4 
2.4 

- 0.2 
2.7 

-0.1 
3.3 

12.5 14.5 
0.0039 0.0045 

s = 7  

0.2 0.1 
2.2 1.9 

s =  10 

-0.2 -0.3 
2.4 2.1 

8 = 15 

-0.2 -0.2 
2.8 2.5 

15.2 
0.0047 

0 
1.8 

- 0.4 
1.9 

- 0.3 
2.3 

16.4 
0.0051 

- 0.1 
1.6 

- 0.5 
1.7 

- 0.4 
2.0 

24.9 
0.0077 

- 1.2 
0 

- 1.5 
- 0.1 

- 1.5 
0.1 

TABLE 2. The tangential stress parameter $. Subscript 1 denotes the ‘turbulent’ model 
while 2 denotes the ‘quasi-laminar’ model. The parameter 6 refers to the mean velocity 
profiles shown in fignrc 4 of  Stewart’s (19G9) paper. 

The total tangential stress on the surface is 

Since Tzz = (ro- U‘) only the second term contributes to the tangential stress. 
For an irrotational deep water wave the boundary condition (2b)  is 

?2 = ( -  1 +ck)eik” at x = 0. (6) 
Except in the unusual case ck > 1 the wave-induced velocity at  the wave crest is 
directed opposite the propagation velocity. This may be expected to make 
a%/& positive at the crest, a situation which is favourable to wave growth. 

Numerical results obtained using the boundary condition (6) have been used 
to compute values of $ defined by the relation 

T,-To = p(2.5u*)2akRe($+iB)eikz,  

where T, and To are the dimensional forms of rs and ro respectively. The para- 
meter $ is a measure of wave growth similar to p so that equal values o f p  and q5 
indicate equal contributions to wave growth. Table 2 contains the value of q5 
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obtained numerically for each of the two turbulence hypotheses discussed in 9 2. 
It is evident that the tangential stresses are most favourable for high wind speeds 
(low c). The ‘ quasi-laminar ’ turbulence model yields values of $ corresponding 
to a energy flux which is appreciable compared with the work done by pressure. 
The alternate turbulence hypothesis generally results in energy being extracted 
from the wave by the tangential stress. 

A third source of energy for the wave is the viscous normal stress which is in 
phase with the wave slope. The viscous stress acting on the wave surface leads to 
a correction to /3 which, for an irrotational wave, is ( - 2 + ck)/6.25. Except in the 
unlikely case ck > 2, this correction is unfavourable to wave growth. For the 
lower wind speeds investigated numerically this effect is comparable to the work 
done on the wave by pressure. 

5. Conclusion 
Neither of the turbulence models investigated here was arrived at  through 

consideration of the dynamics of turbulence and consequently it is not surprising 
that neither model results in good agreement with the data. Some recent experi- 
ments by Kendall (private communication) show that there are significant 
wave-induced fluctuations in the turbulent Reynolds stress (in contrast to the 
‘laminar’ model) and that they are not in phase with the wave elevation (in 
contrast to the ‘turbulent ’ model). The considerable differences between the 
wave-induced velocity fields predicted by these two models demonstrates that 
the problem of wave generation cannot be understood until the wave’s influence 
on the turbulent stresses is known. 

Comparison of the numerical solutions of the ’ quasi-laminar ’ model and the 
asymptotic solutions developed by Miles (1957) and others demonstrates that 
the effects of viscosity can be important even under conditions when the asymp- 
totic solutions seem to pertain. In  order to accurately delineate the region of 
validity of the asymptotic results, a systematic numerical investigation is 
required. 

At this point it can, however, be said that the Miles (1957,1959) theory will not 
be accurate unless the critical layer is outside the viscous wall layer which, for a 
semi-logarithmic mean profile, requires 

where hc is the dimensional critical height and h is the wavelength. Further, 
Davis (1969) has shown that the model is invalid if 

”(--), hcu* * 
a 

where a is the dimensional wave amplitude. These considerations seriously limit 
the conditions for which the theory is expected to apply. 

The author wishes to thank Professor J. W.Miles and Dr R.H.Stewart for 
their co-operation. This work was completed under contract NONR 221 6(23). 
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